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Re-Entry Heat Conduction of a Finite G,G = arbitraryconstank 

i = - l1I2,  imaginary unit 
10,Zl = modified Bessel functions of the first kind of order, zero 

J O J I  = Bessel functions of the first kind of order, zero and one, 

Slab with a Nonconstant Thermal 
Conductivity and one, respectively 

respectively 
WILLIAM R. WELLS* K = thermal conductivity 

&,K1 = modified Beasel functions of the second kind of order, 
zero and one, respectively N A S A  Langley Research Center, Hamptrm, Va. 

The intense. temperatures a t  the surface of a t = time measured from entry 
d c Z o a / +  s = variable in the Laplace transform 

space vehicle may, in some instances, alter the 
thermal conductivity of the layers of the skin below 
the surface. This analysis presents, as a first ap- z = distance normal to surface 
proximation to the problem, a closed-form solution 
for the case of a thermal conductivity that varies 
linearly with distance below the surface. A con- 
vective heat input at the surface which is exponen- 

for the initial phases of entry in which the entry ve- 
locity and angle are nearly constant. 

T,T 
V = entry velocity 

Y,,Y1 = Beasel functions of the second kind of order, zero and 

y = entryangle 
e = pc/a2 
p = densityof material 

w = constant that depends on entry velocity and angle 

Subscripts 
i = initial conditions 

HE solution to the problem of onedimensional heat T conduction through a skin with constant thermal con- 

velocity and entry angle are nearly constant and for which 
the convective heat rate is the dominant input can be found 
in Ref. 1. The present analysis intends to take the basic 

= temperature and transformed temperature, respectively 

one, respectively 

tial in time is assumed. The results should apply 7 = thickness of material 

Nomenclature f = halconditions 
a 
B 

= slope of thermal conductivity curve 
= constant that depends on entry velocity and angle 

C = specific heat of material ductivity for the initial phases of a re-entry in which the 
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Fig. 1 Temperature drop across skins having constant 
and nonconstant thermal conductivities. 

problem in Ref. 1 and extend it to the case of a vehicle having 
a skin whose thermal conductivity varies linearly with depth 
below the surface. Such a solution might serve as a first 
approximation to a situation in which the thermal con- 
ductivity of the layers of the skin below the surface are 
altered by the intense temperature a t  the surface. 

The temperature history through the skin can be obtained 
from the one-dimensional heat-conduction equation which is 

The boundary conditions will be taken to be the same a9 
those given in Ref. 1, where it is assumed that, at the sur- 
face, the heat input is given by the convective heat rate that 3- during the initial phase of entry can be represented by an 
exponential function in time. The back side of the skin is 
insulated, and initially the skin is at  a constant temperature 
throughout. These conditions stated mathematically are 

bT 
B X F O  

- = o  dT 
bX2.2-7 

- = W,r) exp[w!v,r)ll' 

(2) 
4 
4 
1 

6 T(x,O) = Ti 
B(V,y)  and w(V,y) are constants that depend on the entry 4 velocity and angle. 

The solution of Eq. (5)  will be obtained by the application 
of the Laplace t.ransform. The transform of Eq. (5) gives 

d2T d T  
dKz dK 

K - + - - Os'F = -0Ti 

where T(x,s) is the transform of T(x,t) and 0 = pc/a2. 
The solution of (6) is 

T(x,s) = ClZo[2(8sK)1/2] + C2Ko[2(8sK)1/2] + (Ti/s) (7) 

when lo and KO are the first and second kind of the modified 
Bessel functions of zero order. 

The transformations of the boundary conditions (2) are 

B = -  d'F - 
dX-0 S -  w 

TJse of Eq. (8) in Eq. (7) gives, for the transformed t,empera- 
ture, 

T(z,s) = Ti - + ~ (!$ x 
s a(s - w)  

2 (esK ,) q z 0  12 ( e a )  112 1 + zl [a (esK,) 1/2 I K ~  12 [ 1/21 {: 1 [ 2 ( e t ~ , ) 1 / 2 ~ ~ 1  [2(os~,)1/21 - z 1 [ 2 ( e ~ ~ , ) 1 q ~ 1  p ( e ~ ~ p 2 1  

(9) 

The poles of 'F(x,s) are a t  s = 0, w ,  and the roots of the 
denominator of the expression in braces in Eq. (9). These 
are all simple poles. The apparent branch point correspond- 
ing to the factor (K,/Os)1/2 actually provides an extra con- 
tribution to the residue of the pole a t  s = 0, because of the 
behavior of the expression in braces as s + 0. 

To find the poles associated with the expression in braces, 
we use the relations Zo(z) = Jo(ix) and Ko(x) = $ri[J0(ix) + 
iYo(ix)]. These poles are then the roots of 

~ ~ [ 2 i ( e ~ ~ , ) 1 ~ 2 1 ~ , ~ 2 i ( e s ~ ~ ) 1 ~ 2 1  - 
J ,  [2i(es~,)1/2] y1 [2i(es~,)1/21 = o (io) 

J1 and Yl are Bessel functions of the first and second kind 
of order one. 

Let Pm be the roots of (10) such that is1/* = Pm, or 

s = - p m 2  (m = 1,2,  . . . )  (11) 

of Pm can be found in Ref. 2. The temperature is then 
poles of T(x,s) are then a t  s = 0, w, and -PmZ. The 

given as 

We wi!! assume that the thermal conductivity varies with 

K(z )  = Ki + ux (3) 

a = ( K ,  - K i ) / T  (4) 
Ki, K,, and T are the initial and final values for the thermal 
conductivity and skin thickness, respectively. 

depth as 

where 

Substitution of (3) into (1) gives 

(5 )  

where 

9, = J1[2Pm(BK~)1~2]Yo[2Pm(~Ki)1/21 - 
Jo[2Pm(OKi)'/21 Y1 [2Pm(BKi)1'21 + 

( ,)1/2 { y1 [ ~ P , ( B K ~ ) ~ ~ ~ I J ~ [ ~ ~ , ( ~ K , ) ~ ~ ~ ]  - 

J1 [2P,(eKi)1/21 Yo [2B,(BK,) 1/21) (13) 

Some numerical computations based on Eq. (12) are shown 
in Figs. 1 and 2. In Fig. 1 a comparison is made of the stag- 
nation-point temperature a t  any depth in the skin to that 
at the surface for the case of the thermal conductivity re- 
maining constant, decreasing to one-half its initial value, and 
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Comparison of temperatures in skins having con- Fig.  2 
stant and nonconstant thermal conductivities. 

increasing to twice its initial value. Figure 2 shows a com- 
parison of the temperature in a skin having a nonconstant 
thermal conductivity to one for which the thermal con- 
ductivity is constant. The curves in Fig. 2 show a slight 
relief in temperature up to about the middle of the skin for 
the case of the thermal conductivity increasing with depth. 
However, for the back half of the skin, this variation in ther- 
mal conductivity shows a rapid increase in temperature. On 
the other hand, there is a slight temperature rise in the first 
half of the skin for the case of decreasing thermal conduc- 
tivity with an appreciable decrease in temperature for the 
back half of the skin for this variation in thermal conductivity. 

For these figures an entry velocity of 20,OOO fps at 400,OOO 
ft and an entry angle of -20’ was used. The initial value 
of the thermal conductivity used was 0.548 Btu/ft-sec-’F 
which corresponds to electrolytic copper at 1OOO’F. The re- 
sults shown are time independent after about 10 sec. 

References 

1 Wells, ‘8. R. and PVzcLellan, C. H., “Ondmensional heat 
conduction through the skin of a vehicle upon entering a plane- 
tary atmosphere at constant velocity and entry angle,” NASA 
TN D-1476 (1962). 

2 Jahnke, E. and Emde, F., Tables of Functias (Dover Publi- 
cations, Inc., New York, 1945), 4th ed., pp. 204206. 


